Polynormer introduces a polynomial-expressive GT model with linear complexity to balance expressivity and scalability. It learns high-degree polynomials controlled by attention scores, achieving superior performance on multiple datasets. The architecture includes local and global equivariant attention models for learning node representations efficiently. Polynormer demonstrates the efficacy of linear local-to-global attention scheme in capturing critical global structures on graphs.
toiselle kielelle
lähdeaineistosta
arxiv.org
Tärkeimmät oivallukset
by Chenhui Deng... klo arxiv.org 03-05-2024
https://arxiv.org/pdf/2403.01232.pdfSyvällisempiä Kysymyksiä