Large language models face challenges with tasks like infilling and constrained generation due to intractable posterior distributions. Amortized Bayesian inference with GFlowNets offers a solution by fine-tuning models to sample from these distributions efficiently. This approach improves diversity, data efficiency, and generalization compared to traditional training methods. Empirical results demonstrate the effectiveness of this method across various tasks, including sequence continuation, reasoning, arithmetic problem-solving, and story infilling.
翻译成其他语言
从原文生成
arxiv.org
更深入的查询