グラフニューラルネットワーク(GNN)は、複雑な相互作用を捉える強力な数学的表現として機能し、トポロジー構造とノード特徴を協調的かつ柔軟に使用するメッセージパッシングメカニズムが重要である。しかし、GNNは同質性仮定が満たされている場合にのみうまく機能し、異質性グラフに対処できない。この問題に対処するため、Possion-Charlier Network(PCNet)が開発されたが、さらなる効果と効率の向上には課題が残っている。本研究では、PCNetを簡素化し、その堅牢性を高めている。具体的には、連続値へのフィルターオーダーの拡張や適応的近傍サイズの実装などが行われており、実験結果はSemi-supervised learning tasks on various datasets representing both homophilic and heterophilic graphsで有効性を示している。
Sang ngôn ngữ khác
từ nội dung nguồn
arxiv.org
Thông tin chi tiết chính được chắt lọc từ
by Bingheng Li,... lúc arxiv.org 03-07-2024
https://arxiv.org/pdf/2403.03676.pdfYêu cầu sâu hơn