本研究では、大規模言語モデルのインストラクション調整のためのデータ選択手法を提案している。
まず、モデルに少量のデータを経験させることで基本的なインストラクション理解能力を身につけさせる。次に、新たに提案する「インストラクション追従難易度(IFD)」スコアを用いて、各データサンプルの難易度を評価する。IFDスコアが高いデータサンプルを選択して学習を行うことで、わずか10%のデータで既存手法を上回る性能を実現した。
この手法は、大規模データの中から効果的なデータを自動的に選択できるため、手動でのデータキュレーションコストを大幅に削減できる。また、モデル固有の難易度を考慮することで、より適切なデータ選択が可能となる。
実験では、Alpacaデータセットとウィザードデータセットを用いて評価を行い、提案手法の有効性を示した。さらに、データ選択メカニズムの詳細な分析を行い、IFDスコアの有効性を明らかにした。
Sang ngôn ngữ khác
từ nội dung nguồn
arxiv.org
Thông tin chi tiết chính được chắt lọc từ
by Ming Li,Yong... lúc arxiv.org 04-09-2024
https://arxiv.org/pdf/2308.12032.pdfYêu cầu sâu hơn