事前学習済みコードモデルのファインチューニング段階において、クエリとコード間のトークンレベルの相互作用を効果的にモデル化することで、コード検索の精度と効率を向上させることができる。
While large language models (LLMs) show promise for data science code generation, a structured evaluation reveals varying performance across models and task complexities, highlighting the need for careful model selection and further research.
Integrating Large Language Models (LLMs) into socio-technical systems presents significant challenges, but a systems engineering approach, prioritizing problem understanding and context, can help mitigate these issues and ensure reliable, accountable, and sustainable AI-based systems.
SOLIDIFFY 是一種針對 Solidity 智能合約設計的新型抽象語法樹 (AST) 差異分析工具,透過產生精確且簡潔的編輯腳本,實現對智能合約修改的精細分析,有助於漏洞偵測、自動程式碼修復和程式碼審查等下游任務。
SOLIDIFFY is a new tool that improves the analysis and maintenance of Solidity smart contracts by providing more accurate and concise edit scripts compared to existing tools, which is essential for tasks like vulnerability detection and code repair.
Analysis of Workplace StackExchange posts reveals that developer workplace discussions predominantly revolve around conflicts, career movement, and technical skills, highlighting key areas of concern and interest within the software development community.
Building reliable AI agents requires a shift towards AgentOps platforms that prioritize observability and traceability throughout the entire development-to-production life-cycle. This involves systematically tracking and analyzing traceable artifacts generated during each stage, from agent creation and prompt management to execution, evaluation, and monitoring.
新型Mac Miniは、Apple Silicon M4プロセッサの搭載により、コンパクトなボディに優れた処理能力を備えている。
Pythonのosモジュールには、ファイルシステムの操作やシステムレベルのタスクを実行するために知っておくと便利な関数が多数存在する。
본 논문에서는 최첨단 멀티모달 대규모 언어 모델(MLLM)을 활용하여 웹페이지의 인터랙션 디자인을 기능적인 UI 코드로 자동 변환하는 'Interaction-to-Code' 과제의 가능성과 한계점을 실험적으로 분석합니다.