The content discusses the challenges of using LLMs in analytical databases and proposes optimizations to enhance performance. It introduces novel approaches like prefix sharing maximization, deduplication, and SQL query optimizations to reduce computational costs and improve efficiency. The experiments demonstrate substantial speed-ups in query execution times across different query types.
Analytical database providers have added support for invoking Large Language Models (LLMs) through native user-defined functions (UDFs) to assist with natural language tasks within analytical workloads. However, LLM inference is computationally expensive, prompting the need for optimization strategies.
Relational queries present opportunities for accelerating LLM inference by reordering rows and columns to maximize cache reuse and deduplicating redundant requests.
Implementing these optimizations in Apache Spark results in significant latency improvements on diverse LLM-based queries on real datasets.
เป็นภาษาอื่น
จากเนื้อหาต้นฉบับ
arxiv.org
ข้อมูลเชิงลึกที่สำคัญจาก
by Shu Liu,Asim... ที่ arxiv.org 03-12-2024
https://arxiv.org/pdf/2403.05821.pdfสอบถามเพิ่มเติม