이 논문은 Lion 최적화 알고리즘의 이론적 기반을 밝히고자 한다. 연속시간 및 이산시간 분석을 통해 Lion이 일반적인 손실 함수 f(x)를 최소화하면서 ∥x∥∞≤1/λ의 경계 제약을 만족시킬 수 있음을 보여준다. 이를 위해 새로운 Lyapunov 함수를 개발하였으며, 이는 sign(·) 연산자 대신 볼록 함수 K의 부차미분을 사용하는 더 일반적인 Lion-K 알고리즘 가족에도 적용된다. 이러한 분석 결과는 Lion 동역학의 이해를 높이고 향후 개선 및 확장을 위한 기반을 마련한다.
Vers une autre langue
à partir du contenu source
arxiv.org
Questions plus approfondies