The paper introduces TRACE-GPT, a model for pre-training time-series sensor data and detecting faults in semiconductor manufacturing. It addresses challenges of abnormal data scarcity, small training data, and mixed normal types. The model outperforms unsupervised models on open datasets and process logs. It combines temporal convolutional embedding and Generative Pre-trained Transformers for effective anomaly detection.
A otro idioma
del contenido fuente
arxiv.org
Ideas clave extraídas de
by Sewoong Lee,... a las arxiv.org 03-28-2024
https://arxiv.org/pdf/2309.11427.pdfConsultas más profundas