The paper introduces TRACE-GPT, a model for pre-training time-series sensor data and detecting faults in semiconductor manufacturing. It addresses challenges of abnormal data scarcity, small training data, and mixed normal types. The model outperforms unsupervised models on open datasets and process logs. It combines temporal convolutional embedding and Generative Pre-trained Transformers for effective anomaly detection.
Para Outro Idioma
do conteúdo original
arxiv.org
Principais Insights Extraídos De
by Sewoong Lee,... às arxiv.org 03-28-2024
https://arxiv.org/pdf/2309.11427.pdfPerguntas Mais Profundas