The content introduces the KuramotoGNN as a solution to the over-smoothing problem in Graph Neural Networks (GNNs). By drawing parallels between synchronization in coupled oscillators and over-smoothing in GNNs, the author presents theoretical analysis and empirical results showcasing the effectiveness of KuramotoGNN. The model is evaluated on various benchmarks, demonstrating resilience to deep layers and outperforming other GNN architectures.
إلى لغة أخرى
من محتوى المصدر
arxiv.org
الرؤى الأساسية المستخلصة من
by Tuan Nguyen,... في arxiv.org 03-07-2024
https://arxiv.org/pdf/2311.03260.pdfاستفسارات أعمق