LLM 생성 합성 데이터를 활용하여 온라인 정치 토론에 대한 입장 탐지 모델의 성능을 향상시킬 수 있다. 합성 데이터를 통한 데이터 증강과 능동 학습 기법을 통해 라벨링 노력을 줄이면서도 우수한 성능을 달성할 수 있다.
대규모 언어 모델의 에세이 채점 능력을 향상시키기 위해 다중 특성 전문화 기법을 제안하였다. 이를 통해 언어 모델이 에세이의 다양한 측면을 종합적으로 평가할 수 있게 하였다.
본 연구는 수학 문제 해결 능력을 향상시키기 위해 다양한 데이터 증강 기법을 제안하고 평가한다. 특히 문맥 학습 기반 데이터 증강 방법을 통해 기존 데이터를 확장하여 모델의 성능을 개선한다.