提案するフーリエニューラルオペレーターベースのフレームワークは、入力画像のサイズに依存せずに、同時に複数のサイズの画像を訓練することができる。これにより、3次元デジタル多孔質媒体の透過率を効果的に予測することができる。
深層学習モデルは敵対的攻撃に対して脆弱であり、FGSM攻撃やCW攻撃などの高度な攻撃手法に対して防御が困難である。防御蒸留は単純な攻撃に対しては有効だが、より複雑な攻撃手法に対しては十分な防御力を持たない。
ラベルノイズが存在する場合、既存のOOD検出手法は正しく分類されたID画像とOOD画像を区別することが困難である。
本論文では、畳み込みニューラルネットワーク(CNN)の3×3 Conv2Dレイヤーの代替として、直交変換(DCT、ハダマード変換、ブロック波形変換)に基づくニューラルネットワーク層を提案する。これらの層は、変換領域での要素ごとの乗算を利用して畳み込みフィルタリング演算を実行し、可変ソフトしきい値層によって非線形性を導入する。提案層は位置依存型かつチャンネル依存型であり、パラメータ数と乗算数を大幅に削減しつつ、ImageNet-1Kの画像分類タスクでRegular ResNetの精度を向上させることができる。さらに、従来のResNetにバッチ正規化層の前に追加レイヤーとして挿入することで、分類精度を向上させることができる。