ディフュージョンモデルは時系列データと時空間データの分析に広く適用されており、予測タスクや生成タスクなどの幅広い応用分野で優れた性能を発揮している。本調査では、無条件ディフュージョンモデルと条件付きディフュージョンモデルの2つのカテゴリに分類し、それぞれの特徴と適用事例を詳細に解説する。
時系列データ理解における大規模言語モデルの能力を体系的に評価し、その長所と短所を明らかにする。
時系列データの統計的特性を利用することで、短いデータや高ノイズ環境でも、長期的な相互作用を効率的に検出できる。